Monads for Interactive Lsaiyixy Software

Lady Prophetess Catherine Ndarny,
Lady Maintainer of Wirhpixy

Fri., 42 Spring (29 Tagly), PY 3332
88 Q3, Regnal Year 18

357 Ckaslapy Hall,
214 N Robinson Radial, Pisy (Putly),
Az-baiyy, ZB-13111-0101214357

To Lord Roger Jickby,

Lord Chairman,

Jickby Protection Agency

Ste. 100, Pisy Palace,

100 S Robinson Radial, Pisy (Putly),
Az-baiyy, ZB-13111-0100100100

Most honored lord,

Contrary to previous reports, monads[Wad90] are tremendously useful in the
development of interactive software. Therefore, to explain in what way this is
true, a review of monads is in order, starting with the notion of a functor.

A Haskell functor is a type function F' with the signature

type F o
map? (o« — B) - Fa — Fp3
map¥ id = id

mapF (fog) = mapr o mang

—~

A Haskell monad is a type function M with the signature

type M a

mapM (@ — B) - Ma — Mpj

unitM = o — M a

join™ :: M (Ma) — Ma

map™ id = id

map™ (f o g) = map™ f o map™ ¢

unit™ o f = map™ f o unitM

join™ o map™ (map™ f) = map™ f o join
join™ o unit™ = id

join™ o map™ unit™ = id

M

M M M M

joinM o map™ join™ = join™ o join
As noted by previous reports, programming with this signature requires special
syntax. However, the contCompose operator from our previous report is actually
a general monad operator, introduced in the general case by [Wad92], which can
of course be used in lieu of special syntax (as it was in our previous paper). The
monad generalization of contCompose is bind™ , defined for a general monad M

by

bind : Ma — (a« - M3) — Mg
bind™ o f = join™ (map™ f a)

From which we can prove three very useful laws:

unit™ x ‘bind™* f = fxa ‘bind™* unit™ = a(a ‘bind™* h) ‘bindM* k = a ‘bind”* Xz — h

Proof. We will prove the first law, and omit the (similar) proofs of the others
to save space.

unitM z ‘bind™¢ f
=join™ (map™ f (unit™ z))
=join™ (unitM (f x))
=fxz O

M

Even more interestingly, we can define map™ and join™ in terms of bind™:

map™ fa = a ‘bindM* unit™ o fjoin™ a = a ‘bindM* id

Furthermore, we can prove the 8 laws above from these three and the two
definitions above:

Proof. We prove map™ (f o g) = map™ f o map™ g, and omit the other proofs
to save space.

map™ (f o g)a
=a ‘bindM* unit™ o f o g
=a ‘bind™* Nz — unit™ (f (g 7))
=a ‘bind™* Nz — unit™ (g z) ‘bind™* unit™ o f
=(a ‘bind™* unit™ o g) ‘bind™* unitM o f
_ M M
=map™ [(map™ ga) O

Furthermore, we can prove the natural transformation laws without para-
metricity using the bind™ laws; the same proof will work in any language,
regardless of what non-parametric operations it has (of which Haskell has in
fact two: L and strict, which if not standard is certainly common).

1 The View

We incorporate the protocol, Viewlnput, and ViewOutput data types from
our previous report, except that we re-define the following constructors from
ModelResponse (we need to interpret them without round trips):

data ModelResponse = Added Int Int — New line numbers
| Deleted Int Int — Old line numbers

| Changed Int Int Int — Old line numbers, new length

However, viewing View as a monad allows us to incorporate the view state into
the monad, as such:

type View a = [ViewInput] — ViewState
— (a —=[Viewlnput] — ViewState —|[ViewOutput])
— [ViewOutput]
unit Vv vis sk = kaxiss
(a ‘bind"View* fissk = aiss$Azis's’ — fris' s’k

viewHeight 2 Int,
view Width 2 Int,
viewLength : Int,
. . viewPointRow : Int,
data ViewState = ViewState viewPointColumn :: Int,
viewULRow :: Int,
viewULColumn :: Int,
viewText :: Maybe [String]

getVState :: (ViewState — o) — View «
getVState fissk = k(f s)iss

modifyVState :: (ViewState — ViewState) — View ()
modifyVState f is sk = k() is (f s)

Furthermore, we adopt a better technique for filtering inputs than in the last
report; in particular, we now process prompts from the model in getView.

process ny ng len = modifyVState $ X\ s —

viewLength = viewLength s — (ng + 1 — nq) + len,
viewPointRow = adjust (viewPointRow s),

viewULRow = adjust (viewULRow s),

viewText = Nothing

where
adjust 1 =1
+ if i > ny then
len — (ng + 1 — m)
else

0
+ if np > i A 7> n; then
— (maz 0 (len — (i — n)1))
else

getView :: (Vz’ew?nput — Bool) — View ViewInput
getView p =
Ais s k — case is of
(1 —) ‘bind View X —
i:1s — kiis's
case i of
FromModel (Added my ny) —
process (ny — 1) (ng — 1) (ng + 1 — ny) ‘bind V¥ X\ () —
getView p
FromModel (Deleted nq ng) —
process (ny ng 0) “‘bind Ve X () —
getView p
FromModel (Changed ny ng len) —
process ny ny len ‘bind Ve X () —
getView p
pi — unitViev
_ — getView p ‘bind Vv Ni’ —
(Nissk — k() (i :is) s) ‘bindVv X () —
i+ View ;
havelnputView :: View Bool

havelnputView k is s =
case m of

FromModel (Added) — False
k| null | filker | A\m — FromModel (Deleted) — False
FromModel (Changed) — False

_ — True
isFromModel, isFromControl, isFromWimpy :: ViewInput — Bool

isFromModel (FromModel) = True

isFromModel _ = False

isFromControl (FromControl _) = True
isFromControl _ = False
isFromWimpy (FromWimpy) = True
isFromWimpy = False

(*/), (/*\) (0 = Bool) — (o — Bool) — a — Bool
(fVga=FfaVge

fANgze=Tfaznge
putView :: ViewOutput — View ()

1S

15 S

putViewmissk = m : k() iss
getVText :: View String
getVTexrt =
getVState viewText ‘bind V¢ X mb —
case mb of
Just s — ungt View s
Nothing —
fix $ X loop —
getVState viewULRow ‘bind V" \ ulr —
getVState viewULColumn ‘bind V"¢ X ulc —
getVState viewHeight ‘bind Vi*"* \h —
getVState viewWidth ‘bind V" \w —
modifyVState (A st — st{viewText = Just””}) ‘bind V" \() —
putView (ToModel (Print (ulr, ulr + h — 1))) ‘bind Ve¥* X\ () —
getView isFromModel ‘bindV*¥* X (Printing s) —
getVState viewText ‘bind V¢ X mb —
case mb of
Just”” —
let
s = map (take w . drop ulc) s
in
setVState (A st — st{viewText = Just s'}) ‘bind V" X\ () —
unit View s’
Nothing — loop

Having defined this, the view itself becomes easier to define:

view =
(set up window, storing height and width and returning handle) ‘bind Vi¢"* X\ win —
putView (ToModel (PrintLineNum (LineAddress Last))) ‘bind V%" X\ () —
getView isFromModel ‘bindV*** X\ (FromModel (LineNumber len)) —
modifyVState (A s — s{viewLength = len}) ‘bind V" X\ () —

fiz $ X loop —
havelnput View ‘bind V¢ X\ b —
if b then
getView (const True) ‘bind V%" \i —
case i of

FromWimpy r — _
(process) ‘bind Ve X () —

loop
FromControl LookupUL —

getVState viewULRow ‘bind V¢ \ ulr —
getVState viewUL Column ‘bind V¢V X ule —
putView (ToControl (ULIs ulr ulc)) ‘bind V¥ X\ () —

loop
FromControl LookupPoint —

getVState viewPointRow ‘bind V" \ pr —
getVState viewPointColumn ‘bind V¢ X pc —
putView (ToControl (Pointls pr pc)) ‘bind V¥ X () —
loo
FrompCmLtrol LookupScreenSize —
getVState viewHeight ‘bind V" \h —
getVState viewWidth ‘bind V¢V \w —
putView (ToControl (ScreenSizels w h)) ‘bind V¥ X\ () —
loop
FromControl (SetUL ulr’ ulc') —
viewULRow = ulr’,
modifyVState | As — s ¢ viewULColumn = ulc, ‘bind Views X () —
viewText = Nothing

loop
FromControl (SetPoint pr’ pc') —

‘) ,
modifyVsiate (x5 - s{uevtontiion = v L) pina e g -
(re-display, using pr’ & pc’) ‘bind Ve X () —
loop

else

unit View ()
bind Vievs A () —

(shut down win)

Translating the control into monadic form requires only the systematic sub-
stitutions contCompose — bind “°"*°! and ($ x) — unit©°™! z; the transla-
tion is omitted.

References

[Wad90] P. L. Wadler, Comprehending monads, Proceedings of the 1990 ACM
Conference on LISP and Functional Programming, Nice (New York,
NY), ACM, 1990, pp. 61-78.

[Wad92| Philip Wadler, The essence of functional programming, POPL ’92:
Proceedings of the 19th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages (New York, NY, USA), ACM Press,
1992, pp. 1-14.

