
Monads for Interactive �saiýixy Software

Lady Prophetess Catherine �da �my,
Lady Maintainer of Wi �mpixy

Fri., 42 Spring (29 Tag¨y), ÞY 3332
88 Q3, Regnal Year 18

357 Ckas¨aþy Hall,
214 N Robinson Radial, Þisy (Þut¨y),

Az-baiýy, ZB-13111-0101214357

To Lord Roger Jickþy,
Lord Chairman,

Jickþy Protection Agency
Ste. 100, Þisy Palace,

100 S Robinson Radial, Þisy (Þut¨y),
Az-baiýy, ZB-13111-0100100100

Most honored lord,
Contrary to previous reports, monads[Wad90] are tremendously useful in the

development of interactive software. Therefore, to explain in what way this is
true, a review of monads is in order, starting with the notion of a functor.

A Haskell functor is a type function F with the signature

type F α
mapF :: (α → β) → F α → F β
mapF id = id
mapF (f ◦ g) = mapF f ◦ mapF g

A Haskell monad is a type function M with the signature

type M α
mapM :: (α → β) → M α → M β
unitM :: α → M α
joinM :: M (M α) → M α
mapM id = id
mapM (f ◦ g) = mapM f ◦ mapM g
unitM ◦ f = mapM f ◦ unitM

joinM ◦ mapM (mapM f ) = mapM f ◦ joinM

joinM ◦ unitM = id
joinM ◦ mapM unitM = id

1



joinM ◦ mapM joinM = joinM ◦ joinM

As noted by previous reports, programming with this signature requires special
syntax. However, the contCompose operator from our previous report is actually
a general monad operator, introduced in the general case by [Wad92], which can
of course be used in lieu of special syntax (as it was in our previous paper). The
monad generalization of contCompose is bindM , de�ned for a general monad M
by

bindM :: M α → (α → M β) → M β
bindM a f = joinM (mapM f a)

From which we can prove three very useful laws:

unitM x ‘bindM ‘ f = f x a ‘bindM ‘ unitM = a (a ‘bindM ‘ h) ‘bindM ‘ k = a ‘bindM ‘ λ x → h x ‘bindM ‘ k

Proof. We will prove the �rst law, and omit the (similar) proofs of the others
to save space.

unitM x ‘bindM ‘ f
=joinM (mapM f (unitM x ))
=joinM (unitM (f x ))
=f x

Even more interestingly, we can de�ne mapM and joinM in terms of bindM :

mapM f a = a ‘bindM ‘ unitM ◦ f joinM a = a ‘bindM ‘ id

Furthermore, we can prove the 8 laws above from these three and the two
de�nitions above:

Proof. We provemapM (f ◦ g) = mapM f ◦ mapM g , and omit the other proofs
to save space.

mapM (f ◦ g) a
=a ‘bindM ‘ unitM ◦ f ◦ g
=a ‘bindM ‘ λ x → unitM (f (g x ))
=a ‘bindM ‘ λ x → unitM (g x ) ‘bindM ‘ unitM ◦ f
=(a ‘bindM ‘ unitM ◦ g) ‘bindM ‘ unitM ◦ f
=mapM f (mapM g a)

Furthermore, we can prove the natural transformation laws without para-
metricity using the bindM laws; the same proof will work in any language,
regardless of what non-parametric operations it has (of which Haskell has in
fact two: ⊥ and strict , which if not standard is certainly common).

2



1 The View

We incorporate the protocol, ViewInput , and ViewOutput data types from
our previous report, except that we re-de�ne the following constructors from
ModelResponse (we need to interpret them without round trips):

data ModelResponse = Added Int Int � New line numbers
| Deleted Int Int � Old line numbers
| Changed Int Int Int � Old line numbers, new length
...

However, viewing View as a monad allows us to incorporate the view state into
the monad, as such:

type View α = [ViewInput ] → ViewState
→ (α →[ViewInput ] → ViewState →[ViewOutput ])
→ [ViewOutput ]

unitView x is s k = k x is s
(a ‘bindView ‘ f ) is s k = a is s $ λ x is ′ s ′ → f x is ′ s ′ k

data ViewState = ViewState



viewHeight :: Int ,
viewWidth :: Int ,
viewLength :: Int ,
viewPointRow :: Int ,
viewPointColumn :: Int ,
viewULRow :: Int ,
viewULColumn :: Int ,
viewText :: Maybe [String ]


getVState :: (ViewState → α) → View α
getVState f is s k = k (f s) is s
modifyVState :: (ViewState → ViewState) → View ()
modifyVState f is s k = k () is (f s)

Furthermore, we adopt a better technique for �ltering inputs than in the last
report; in particular, we now process prompts from the model in getView .

process n1 n2 len = modifyVState $ λ s →

s


viewLength = viewLength s − (n2 + 1 − n1) + len,
viewPointRow = adjust (viewPointRow s),
viewULRow = adjust (viewULRow s),
viewText = Nothing



3



where
adjust i = i

+ if i ≥ n2 then
len − (n2 + 1 − n1)

else
0

+ if n2 > i ∧ i ≥ n1 then
− (max 0 (len − (i − n)1))

else
0

getView :: (ViewInput → Bool) → View ViewInput
getView p =(

λ is s k → case is of
[] → []
i : is ′ → k i is ′ s

)
‘bindView ‘ λ i →

case i of
FromModel (Added n1 n2) →

process (n1 − 1) (n1 − 1) (n2 + 1 − n1) ‘bindView ‘ λ () →
getView p

FromModel (Deleted n1 n2) →
process (n1 n2 0) ‘bindView ‘ λ () →
getView p

FromModel (Changed n1 n2 len) →
process n1 n2 len ‘bindView ‘ λ () →
getView p

_ | p i → unitView i
_ → getView p ‘bindView ‘ λ i ′ →

(λ is s k → k () (i ′ : is) s) ‘bindView ‘ λ () →
unitView i

haveInputView :: View Bool
haveInputView k is s =

k

null

filter

λ m →

case m of
FromModel (Added __) → False
FromModel (Deleted __) → False
FromModel (Changed ___) → False
_ → True

 is


 is s

isFromModel , isFromControl , isFromWimpy :: ViewInput → Bool
isFromModel (FromModel _) = True
isFromModel _ = False
isFromControl (FromControl _) = True
isFromControl _ = False
isFromWimpy (FromWimpy _) = True
isFromWimpy _ = False
(
∗
∨), (

∗
∧) :: (α → Bool) → (α → Bool) → α → Bool

(f
∗
∨ g) x = f x ∨ g x

(f
∗
∧ g) x = f x ∧ g x

putView :: ViewOutput → View ()

4



putView m is s k = m : k () is s
getVText :: View String
getVText =

getVState viewText ‘bindView ‘ λ mb →
case mb of

Just s → unitView s

Nothing →
fix $ λ loop →

getVState viewULRow ‘bindView ‘ λ ulr →
getVState viewULColumn ‘bindView ‘ λ ulc →
getVState viewHeight ‘bindView ‘ λ h →
getVState viewWidth ‘bindView ‘ λ w →
modifyVState (λ st → st{viewText = Just ””}) ‘bindView ‘ λ () →
putView (ToModel (Print (ulr , ulr + h − 1))) ‘bindView ‘ λ () →
getView isFromModel ‘bindView ‘ λ (Printing s) →
getVState viewText ‘bindView ‘ λ mb →
case mb of

Just ”” →
let

s ′ = map (take w . drop ulc) s
in
setVState (λ st → st{viewText = Just s ′}) ‘bindView ‘ λ () →
unitView s ′

Nothing → loop

5



Having de�ned this, the view itself becomes easier to de�ne:

view =
〈set up window, storing height and width and returning handle〉 ‘bindView ‘ λ win →
putView (ToModel (PrintLineNum (LineAddress Last))) ‘bindView ‘ λ () →
getView isFromModel ‘bindView ‘ λ (FromModel (LineNumber len)) →
modifyVState (λ s → s{viewLength = len}) ‘bindView ‘ λ () →

fix $ λ loop →
haveInputView ‘bindView ‘ λ b →
if b then

getView (const True) ‘bindView ‘ λ i →
case i of

FromWimpy r →
〈process r〉 ‘bindView ‘ λ () →
loop

FromControl LookupUL →
getVState viewULRow ‘bindView ‘ λ ulr →
getVState viewULColumn ‘bindView ‘ λ ulc →
putView (ToControl (ULIs ulr ulc)) ‘bindView ‘ λ () →
loop

FromControl LookupPoint →
getVState viewPointRow ‘bindView ‘ λ pr →
getVState viewPointColumn ‘bindView ‘ λ pc →
putView (ToControl (PointIs pr pc)) ‘bindView ‘ λ () →
loop

FromControl LookupScreenSize →
getVState viewHeight ‘bindView ‘ λ h →
getVState viewWidth ‘bindView ‘ λ w →
putView (ToControl (ScreenSizeIs w h)) ‘bindView ‘ λ () →
loop

FromControl (SetUL ulr ′ ulc′) →

modifyVState

λ s → s

viewULRow = ulr ′,
viewULColumn = ulc′,
viewText = Nothing


 ‘bindView ‘ λ () →

loop
FromControl (SetPoint pr ′ pc′) →

modifyVState
(

λ s → s
{

viewPointRow = pr ′,
viewPointColumn = pc′

})
‘bindView ‘ λ () →

〈re-display, using pr ′ & pc′〉 ‘bindView ‘ λ () →
loop

else
unitView ()


‘bindView ‘ λ () →
〈shut down win〉

Translating the control into monadic form requires only the systematic sub-
stitutions contCompose → bindControl and ($ x ) → unitControl x ; the transla-
tion is omitted.

6



References

[Wad90] P. L. Wadler, Comprehending monads, Proceedings of the 1990 ACM
Conference on LISP and Functional Programming, Nice (New York,
NY), ACM, 1990, pp. 61�78.

[Wad92] Philip Wadler, The essence of functional programming, POPL '92:
Proceedings of the 19th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages (New York, NY, USA), ACM Press,
1992, pp. 1�14.

7


